hello_mbot_kalibrierung
                Unterschiede
Hier werden die Unterschiede zwischen zwei Versionen angezeigt.
| Beide Seiten der vorigen RevisionVorhergehende ÜberarbeitungNächste Überarbeitung | Vorhergehende Überarbeitung | ||
| hello_mbot_kalibrierung [2025/02/18 13:33] – [zweite (komplexere) Variante] torsten.roehl | hello_mbot_kalibrierung [2025/02/19 19:55] (aktuell) – [Bedienung] torsten.roehl | ||
|---|---|---|---|
| Zeile 1: | Zeile 1: | ||
| ====== Hello mBot Kalibrierung ====== | ====== Hello mBot Kalibrierung ====== | ||
| - | FIXME Abschnitt entsteht gerade! | + | |
| Zeile 11: | Zeile 11: | ||
| {{ : | {{ : | ||
| - | ====== erste (einfache) Variante | + | ====== | 
| <WRAP center round tip 90%> | <WRAP center round tip 90%> | ||
| Dieses Programm ermöglicht eine **90-Grad-Drehung** des mBot. | Dieses Programm ermöglicht eine **90-Grad-Drehung** des mBot. | ||
| Zeile 26: | Zeile 26: | ||
| * Falls sich der mBot zu weit dreht → '' | * Falls sich der mBot zu weit dreht → '' | ||
| * Falls sich der mBot zu wenig dreht → '' | * Falls sich der mBot zu wenig dreht → '' | ||
| - | * Der optimale Wert wird durch Tests ermittelt. | + | * <color #ff7f27>Der optimale Wert muss durch Tests experimentell | 
| + | ==== Quellcode (engl. Sourcecode) ==== | ||
| <Code c linenums:1 | Listing 1: | <Code c linenums:1 | Listing 1: | ||
| #include < | #include < | ||
| Zeile 57: | Zeile 57: | ||
| === Vorteile & Nachteile === | === Vorteile & Nachteile === | ||
| - | ^  Vorteil ^  Nachteil ^ | + | ^Vorteil ^Nachteil^ | 
| | ✅ Einfach zu implementieren und gut für Programmieranfänger geeignet. | ❌ Manuelle Kalibrierung ist aufwendig. | | | ✅ Einfach zu implementieren und gut für Programmieranfänger geeignet. | ❌ Manuelle Kalibrierung ist aufwendig. | | ||
| |   | ❌ Bei schwächer werdender Batterie muss die Drehzeit erneut angepasst werden. | | |   | ❌ Bei schwächer werdender Batterie muss die Drehzeit erneut angepasst werden. | | ||
| Zeile 63: | Zeile 63: | ||
| - | ====== zweite (komplexere) Variante ====== | + | ====== | 
| <WRAP center round tip 90%> | <WRAP center round tip 90%> | ||
| Zeile 73: | Zeile 73: | ||
| Nach der Kalibrierung kann der Roboter getestet werden. | Nach der Kalibrierung kann der Roboter getestet werden. | ||
| + | ** | ||
| + | Dieses Programm verwendet eine einfache Tastensteuerung – einmal zur Kalibrierung und danach zum Testen der Kalibrierung. Es dient lediglich als Beispiel, um das Prinzip zu veranschaulichen.** | ||
| </ | </ | ||
| - | === Funktionsweise === | ||
| - | * Die FSM steuert den Kalibrierungsprozess basierend auf Benutzereingaben. | ||
| - | * Der mBot führt eine Drehung aus und passt die Drehzeit automatisch an. | ||
| - | * Nach erfolgreicher Kalibrierung kann die Drehung getestet werden. | ||
| - | Dieses Programm verwendet eine einfache Tastensteuerung – einmal zur Kalibrierung | + | ^Idee^ | 
| + | |{{ : | ||
| + | |< | ||
| + | Der **mBot** befindet sich auf einem **schwarzen L** (90-Grad-Winkel) als Referenz. | ||
| + | |||
| + | Der Roboter dreht sich gegen den Uhrzeigersinn, | ||
| + | Beim Zurückdrehen wird die Zeit erneut erfasst. | ||
| + | Aus beiden Werten wird der Mittelwert gebildet, wodurch sich der **mBot** selbstständig auf 90-Grad-Kurven kalibriert. | ||
| + | |||
| + | Auf diese Weise kann er sich immer wieder automatisch anpassen, falls sich z. B. der Akkuladestand ändert und die Motorleistung variiert. | ||
| + | Durch mehrfaches Kalibrieren ließe sich ein noch präziserer Mittelwert berechnen. | ||
| + | |||
| + | </ | ||
| + | |||
| + | |||
| + | |||
| + | |||
| + | ==== Quellcode (engl. Sourcecode) ==== | ||
| <Code c linenums:1 | Listing 1: | <Code c linenums:1 | Listing 1: | ||
| + | #include " | ||
| + | // Hardware | ||
| + | MeBuzzer buzzer; | ||
| + | MeLineFollower lineFinder(PORT_2); | ||
| + | MeRGBLed led(0, 2); // must be fixed! | ||
| + | MeDCMotor motor1(M1); | ||
| + | MeDCMotor motor2(M2); | ||
| + | int PIN_BUTTON = 7; // must be fixed! | ||
| + | int threshold | ||
| + | int buttonCount; | ||
| + | // Allgemein | ||
| + | int speed = 100; // Motor speed | ||
| + | unsigned long time90degree; | ||
| + | |||
| + | // turn90Degree... | ||
| + | bool t90d_isTurning = false; | ||
| + | unsigned long t90d_turnStartTime = 0; | ||
| + | // actionCalibration... | ||
| + | unsigned long ac_turnStartTimeLeft | ||
| + | unsigned long ac_turnTimeLeft = 0; | ||
| + | unsigned long ac_turnStartTimeRight = 0; | ||
| + | unsigned long ac_turnTimeRight = 0; | ||
| + | bool ac_isTurning = false; | ||
| + | bool ac_isLeftTurning = false; | ||
| + | bool ac_isRightTurning = false; | ||
| + | bool ac_calibrationDone = false; | ||
| + | // | ||
| + | bool at_doneLeft = false; | ||
| + | bool at_doneRight = false; | ||
| + | bool at_testComplete = false; | ||
| + | |||
| + | enum State { | ||
| + | STATE_OFF, | ||
| + | STATE_CALIBRATION, | ||
| + | STATE_TEST | ||
| + | }; | ||
| + | State state = STATE_OFF; | ||
| + | |||
| + | void setup() { | ||
| + | led.setpin(13); | ||
| + | pinMode(PIN_BUTTON, | ||
| + | buttonCount = 0; | ||
| + | } | ||
| + | |||
| + | void loop() { | ||
| + | // step: command | ||
| + | int cmd = read(); | ||
| + | // step: state | ||
| + | state  = decode(cmd); | ||
| + | // step: action | ||
| + | switch (state) { | ||
| + | case STATE_CALIBRATION: | ||
| + | actionCalibration(); | ||
| + | break; | ||
| + | case STATE_TEST: | ||
| + | actionTest(); | ||
| + | break; | ||
| + | case STATE_OFF: | ||
| + | actionOff(); | ||
| + | break; | ||
| + | } | ||
| + | } | ||
| + | |||
| + | |||
| + | /* | ||
| + |  | ||
| + | */ | ||
| + | |||
| + | bool turn90Degree(bool left) { | ||
| + | // step: ...start turning | ||
| + | if (!t90d_isTurning) { | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | t90d_isTurning | ||
| + | int dir = left ? 1 : -1; | ||
| + | |||
| + | motor1.run(dir * speed); | ||
| + | motor2.run(dir * speed); | ||
| + | t90d_turnStartTime = millis(); | ||
| + | return false; | ||
| + | } | ||
| + | // step: ...in progress | ||
| + | if (millis() - t90d_turnStartTime < time90degree) | ||
| + | return false; | ||
| + | |||
| + | // step: ... finished | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | t90d_isTurning = false; | ||
| + | |||
| + | return true; | ||
| + | } | ||
| + | |||
| + | bool isButtonPressed() { | ||
| + | static bool buttonPressed = false; | ||
| + | int value = analogRead(PIN_BUTTON); | ||
| + | |||
| + | if (value < threshold) { | ||
| + | if (!buttonPressed) { | ||
| + | buttonPressed = true; | ||
| + | return true; | ||
| + | } | ||
| + | } else { | ||
| + | buttonPressed = false; // Button wurde losgelassen | ||
| + | } | ||
| + | return false; | ||
| + | |||
| + | } | ||
| + | |||
| + | int read() { | ||
| + | if ( isButtonPressed() ) | ||
| + | buttonCount += 1; | ||
| + | |||
| + | if (buttonCount > 2) | ||
| + | buttonCount = 0; | ||
| + | |||
| + | return buttonCount; | ||
| + | } | ||
| + | |||
| + | |||
| + | State decode(int cmd) { | ||
| + | switch (cmd) { | ||
| + | case 1: return STATE_CALIBRATION; | ||
| + | case 2: return STATE_TEST; | ||
| + | } | ||
| + | return STATE_OFF; | ||
| + | } | ||
| + | |||
| + | void actionCalibration() { | ||
| + | |||
| + | if (ac_calibrationDone) | ||
| + | return; | ||
| + | |||
| + | led.setColorAt(1, | ||
| + | led.setColorAt(0, | ||
| + | led.show(); | ||
| + | int sensorState = lineFinder.readSensors(); | ||
| + | |||
| + | // step - start turning left | ||
| + | if (!ac_isTurning) { | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | motor1.run(speed); | ||
| + | motor2.run(speed); | ||
| + | ac_turnStartTimeLeft = millis(); | ||
| + | ac_isTurning = true; | ||
| + | ac_isRightTurning = true; | ||
| + | do { | ||
| + | sensorState = lineFinder.readSensors(); | ||
| + | } while ( sensorState != S1_OUT_S2_OUT); | ||
| + | } | ||
| + | |||
| + | // step - end turning left ... start turning right | ||
| + | if (ac_isRightTurning && sensorState == S1_IN_S2_IN) { | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | ac_turnTimeLeft = millis() - ac_turnStartTimeLeft; | ||
| + | |||
| + | motor1.run(-speed); | ||
| + | motor2.run(-speed); | ||
| + | ac_turnStartTimeRight = millis(); | ||
| + | do { | ||
| + | sensorState = lineFinder.readSensors(); | ||
| + | } while ( sensorState != S1_OUT_S2_OUT); | ||
| + | ac_isRightTurning = false; | ||
| + | ac_isLeftTurning = true; | ||
| + | } | ||
| + | |||
| + | // step - end turing right | ||
| + | if (ac_isLeftTurning && sensorState == S1_IN_S2_IN) { | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | ac_turnTimeRight = millis() - ac_turnStartTimeRight; | ||
| + | time90degree = (ac_turnTimeLeft + ac_turnTimeRight) / 2.0; | ||
| + | ac_calibrationDone = true; | ||
| + | led.setColorAt(1, | ||
| + | led.setColorAt(0, | ||
| + | led.show(); | ||
| + | buzzer.tone(1200, | ||
| + | } | ||
| + | |||
| + | } | ||
| + | void actionTest() { | ||
| + | |||
| + | if (!at_doneLeft) { // Links-Drehung | ||
| + | at_doneLeft = turn90Degree(true); | ||
| + | led.setColorAt(1, | ||
| + | led.setColorAt(0, | ||
| + | led.show(); | ||
| + | return; | ||
| + | } | ||
| + | |||
| + | if (!at_doneRight) { // Rechts-Drehung | ||
| + | at_doneRight = turn90Degree(false); | ||
| + | return; | ||
| + | } | ||
| + | |||
| + | if (!at_testComplete) { // fertig | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | led.setColorAt(1, | ||
| + | led.setColorAt(0, | ||
| + | led.show(); | ||
| + | buzzer.tone(1200, | ||
| + | at_testComplete = true; | ||
| + | return; | ||
| + | } | ||
| + | } | ||
| + | |||
| + | void actionOff() { | ||
| + | led.setColorAt(1, | ||
| + | led.setColorAt(0, | ||
| + | led.show(); | ||
| + | |||
| + | // reset | ||
| + | motor1.stop(); | ||
| + | motor2.stop(); | ||
| + | |||
| + | // reset state calibration | ||
| + | ac_isTurning = false; | ||
| + | ac_isLeftTurning = false; | ||
| + | ac_isRightTurning = false; | ||
| + | ac_calibrationDone = false; | ||
| + | |||
| + | // reset state test | ||
| + | at_doneLeft = false; | ||
| + | at_doneRight = false; | ||
| + | at_testComplete = false; | ||
| + | } | ||
| </ | </ | ||
| + | ==== Bedienung ==== | ||
| + | <WRAP center round box 90%> | ||
| + | **Nach dem Start** befindet sich der mBot im Ruhezustand. Nachdem er auf der **L-Position** platziert wurde, kann es losgehen. | ||
| + | |||
| + | ⚡ **Schritt 1: | ||
| + | ▶ **Drücken des Tasters** → **LEDs werden <color # | ||
| + | * Die **Kalibrierung** startet. | ||
| + | * Nach Abschluss der Kalibrierung **erlöschen die LEDs**. | ||
| + | |||
| + | ⚡ **Schritt 2: | ||
| + | ▶ **Erneutes Drücken des Tasters** → **LEDs werden <color # | ||
| + | * Der **Testlauf** beginnt. | ||
| + | * Nach Abschluss des Testlaufs **erlöschen die LEDs**. | ||
| + | |||
| + | ⚡ **Schritt 3: | ||
| + | ▶ **Nach dem Testlauf** kehrt der mBot durch Drückens des Tasters in den **Ruhezustand** zurück. | ||
| + | * Der Vorgang kann **von vorne** gestartet werden. | ||
| + | |||
| + | </ | ||
| + | |||
| === Vorteile & Nachteile === | === Vorteile & Nachteile === | ||
hello_mbot_kalibrierung.1739885610.txt.gz · Zuletzt geändert:  von torsten.roehl
                
                