Benutzer-Werkzeuge

Webseiten-Werkzeuge


perzeptron_aufgaben

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
perzeptron_aufgaben [2025/02/08 11:49] – [Datenformat (CSV)] torsten.roehlperzeptron_aufgaben [2025/02/09 12:12] (aktuell) torsten.roehl
Zeile 1: Zeile 1:
 ====== Perzeptron Aufgaben ====== ====== Perzeptron Aufgaben ======
- +===== Aufgabe: Klassifikation  AND/OR und das XOR-Problem ===== 
 +Einfache (klassische) Perzeptron-Probleme wie das UND/ODER und das XOR-Problem werden im Abschnitt Lernalgorithmus behandelt ([[lernalgorithmus|siehe dort]]).
 ===== Aufgabe: Klassifikation von Iris setosa ===== ===== Aufgabe: Klassifikation von Iris setosa =====
  
Zeile 7: Zeile 7:
 Der **Iris-Datensatz** ist einer der bekanntesten Datensätze im Bereich maschinelles Lernen. Er enthält Messungen von drei verschiedenen Schwertlilienarten (**Iris setosa**, **Iris versicolor**, **Iris virginica**).   Der **Iris-Datensatz** ist einer der bekanntesten Datensätze im Bereich maschinelles Lernen. Er enthält Messungen von drei verschiedenen Schwertlilienarten (**Iris setosa**, **Iris versicolor**, **Iris virginica**).  
 \\ \\
-Der Datensatz wurde ursprünglich **1936 von Ronald A. Fisher** veröffentlicht und ist frei verfügbar ([[https://de.wikipedia.org/wiki/Schwertlilien-Datensatz|Schwertlilien-Datensatz (Wikipedia)]]).+Der Datensatz wurde ursprünglich **1936 von Ronald A. Fisher** veröffentlicht und ist frei verfügbar ([[https://de.wikipedia.org/wiki/Schwertlilien-Datensatz|Schwertlilien-Datensatz (Wikipedia)]]). 
 \\ \\
-Das Ziel dieser Aufgabe ist es, ein **einfaches Perzeptron** zu trainieren, das automatisch erkennt, ob eine gegebene Blume zur Art **Iris setosa** gehört oder nicht. Die Daten enthalten vier messbare Merkmale der Blüte, die als Eingabe für das neuronale Netz dienen. Die gewünschte Ausgabe ist die Art.//+Die Daten enthalten vier messbare Merkmale der Blüte, die als Eingabe für das neuronale Netz dienen, sowie den Namen der Art als Ausgabe. 
 +// 
 + 
 + 
 +<WRAP center round tip 90%> 
 +Das Ziel dieser Aufgabe ist es, ein **einfaches Perzeptron** zu trainieren, das automatisch erkennt, ob eine gegebene Blume zur Art **Iris setosa** gehört oder nicht.  
 +</WRAP> 
 + 
  
-==== Die drei Iris-Arten ====   
-Hier sind Beispielbilder der drei Blumenarten: 
  
 ^ **Iris setosa**  ^ **Iris versicolor**  ^ **Iris virginica**  ^ ^ **Iris setosa**  ^ **Iris versicolor**  ^ **Iris virginica**  ^
-| {{https://upload.wikimedia.org/wikipedia/commons/4/41/Iris_setosa_2.jpg?200}} | {{https://upload.wikimedia.org/wikipedia/commons/9/9f/Iris_versicolor_3.jpg?200}} | {{https://upload.wikimedia.org/wikipedia/commons/5/56/Iris_virginica.jpg?200}} |+| {{ :inf:ki:resized_setosa.jpg?200 |}} |{{ :inf:ki:resized_versicolor.jpg?200 |}}  | {{ :inf:ki:resized_virginica.jpg?200 |}} |
  
 ==== Datenformat (CSV) ====   ==== Datenformat (CSV) ====  
Zeile 28: Zeile 34:
  
 <WRAP center round download 95%> <WRAP center round download 95%>
-**Download einer Turingmaschine in Java für Android.** +**Download Iris-Datensatz als //gezippte// CSV-Datei.**  
 + 
 + 
 +{{ :inf:ki:iris_datensatz.csv.zip |}}
  
-{{ :inf:informatics4schoolde-release.apk | Android-APK vom Autor dieser Homepage}} 
 </WRAP> </WRAP>
  
 ==== Aufgabe ====   ==== Aufgabe ====  
 +
 +^ **Topologie des Netzwerks**  ^
 +|{{ :inf:ki:iris-nn.png?200 |}}|
 +|Ein Perzeptron mit vier Eingangsneuronen (insgesamt fünf Gewichten) und einem Ausgangsneuron für die Klassifizierung der Art. |
   - **Laden Sie den Datensatz** und bereiten Sie die Daten für das Training vor.     - **Laden Sie den Datensatz** und bereiten Sie die Daten für das Training vor.  
   - **Teilen Sie den Datensatz** in **80% Trainingsdaten** und **20% Testdaten**.     - **Teilen Sie den Datensatz** in **80% Trainingsdaten** und **20% Testdaten**.  
Zeile 88: Zeile 100:
  
   * Zeigen Sie, dass dies **äquivalent zu einer Geradengleichung** der Form \( y = mx + b \) ist, und zeichnen Sie die Gerade in das Diagramm ein.     * Zeigen Sie, dass dies **äquivalent zu einer Geradengleichung** der Form \( y = mx + b \) ist, und zeichnen Sie die Gerade in das Diagramm ein.  
 +      * Wiederholen Sie das Lernen und vergleichen Sie die Diagramme.
  
 Diskutieren Sie das Ergebnis.   Diskutieren Sie das Ergebnis.  
perzeptron_aufgaben.1739015383.txt.gz · Zuletzt geändert: 2025/02/08 11:49 von torsten.roehl